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ABSTRACT 

We clarify the gauge invariance, infrared structure, and completeness 

of ‘t Hooft’s solution for the meson sector of two-dimensional quantum 

chromodynamics. Electromagnetic form factors of mesons are then 

shown to obey an asymptotic power law, whose power is dynamically 

determined and is not related to the short distance behavior of the theory. 

Following a review of the total annihilation cross section for producing 

hadrons, we discuss deep inelastic lepton scattering. As expected, 

Bjorken scaling is obtained, but we show how the sum over hadronic 

final states reproduces the parton model precisely. The Drell-Yan-West 

and Bloom-Gilman relations are fulfilled for the relation between the 

scaling function and form factors. We conclude by speculating on the 

applicability of our picture of form factors to the real, four-dimensional 

world. We argue that this is a viable alternative to dimensional scaling 

and, phenomenologically, the differences between our predictions and the 

dimensional counting rules are slight for light quarks. Finally, we attempt 

to abstract those features of the model which may guide us toward a 

solution to the four-dimensional problem. 

e Operated bv Universities Research Association Inc. under contract with the Enerqy Research and Develooment Administration 
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Quantum chromodynamics, 
1 

the theory of colored quarks interacting 

via colored gluons in a locally gauge invariant manner, is a promising 

candidate for the theory of strong interactions. Its consistency (up to 

logarithms ) with free field short distance structure having been established, 2 

an army of theorists are attempting to discover what are its spectrum 

and long-range forces. It is hoped that the ill-defined infrared structure 

will somehow lead to a confining potential between quarks, antiquarks, 

and gluons in color -singlet, gauge-invariant channels, so that the color- 

singlet bound states (hadrons) may form a complete set of asymptotic 

states, and neither quarks nor gluons will ever appear as physical states. 

It seems certain that some approximation scheme must be found which 

renders the infrared behavior tractable. 

One promising idea3 is to consider an expansion in N, the number of 

colors, viz, N - a3 for fixed g2N, (g the coupling constant of &CD). . The 

expansion is suggestive, for it is in one-to-one correspondence to the 

dual perturbation theory. 

So far, little further progress has been made in this approach in 

four dimensional space -time, but It Hooft has pointed out4 that in two 

dimensions, the structure of the theory can be ascertained. Although 

in four dimensions no one knows yet whether a confining force arises, 

in two dimensions it obviously does. Even in lowest order, the exchange 

of a massless gluon corresponds to a linearly rising attractive potential 

between a quark-antiquark pair in a singlet channel. By restricting our 
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attention to two dimensions, we remove any possibility of understanding 

the confinement mechanism in four. Nevertheless, the two-dimensional 

model remains of interest as a non-trivial, solvable quantum field theory 

of confinement. Since we are not so familiar with such theories, we may 

employ the model as a theoretical laboratory illustrating the phenomena 

conjectured to occur in the four-dimensional theory. 

Recently the model has been further elaborated 5, 6 and such questions 

as hadron scattering, unitarity, short-distance behavior, higher order 

-I 
corrections in - 71, 

N’ 
and “c harmonium have been discussed. The purposes 

of this paper are two-fold: First, we clarify further some of the mathe- 

matical features of the model, paying attention to questions of the infrared 

cutoff, gauge invariance, completeness, and the breakdown of the cluster 

decomposition. Secondly, we calculate mesonic form factors with particular 

interest in their asymptotic behavior. Thirdly, we investigate deep 

inelastic lepton scattering in the Bjorken Limit. Since our theory is 

asymptotically free, we must find scaling, but we are interested in how 

this is reproduced by the hadronic final states. From their inception, 

parton models* have been vague about hadronic final states, maintaining 

an uneasy coexistence between Bjorken scaling and the absence of quark 

final states. Since the model discussed here is precise and simultaneously 

satisfies scaling and quark confinement, many of our worries can be laid 

to rest. We shall see how previous attempts to marry Feynman’s 

qualitative description with field theory fail and shall indicate the manner 
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in which a new parton model may be formulated to be consistent with our 

experience here. Such a reformulation is potentially of great importance 

phenomenologically, since one could begin to discuss the subject of 

hadronic final states in the deEp inelastic region with some confidence. 

The outline of this paper is as follows: In Section I, we take up the 

mathematical structure of the model. We will argue, in particular, 

that It Hooft’s cutoff parameter X can be thought of as a gauge parameter 

(as X - 0) and has nothing really to do with confinement. We show that 

the bound state wave function 4n ( x) is a gauge invariant. We discuss 

completeness and crossing symmetry. Finally, we derive a useful 

scaling relation obeyed by the bound state wave functions. In Section 

11, we discuss the quark “form factor” for an arbitrary local source. 

In Section III, we review e-e+ * hadrons’ as well as the production 

from a scalar source. In Section IV, we discuss hadron electromagnetic 

form factors. In this model, the Brodsky-Farrar9 picture fails; nevertheless, 

the form factors fall like a power. (q 
2 -1-p 

) , where (3 is a dynamically 

determined parameter. In Section V, we discuss deep inelastic lepton 

scattering, e h + e-X, showing that, in the Bjorken limit, the asymptotic 

behavior is the same as the “handbag” diagram even though there are no 

quark final states. The Drell-Yan- West’ ’ and Bloom-Gilman” 

relations are satisfied. Finally, in Section VI, we summarize the lessons 

learned, outline future applications of the model, and offer some conjectures 

about four dimensional theory. In a subsequent paper, we shall discuss 
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other inelastic processes, 
- + such as inclusive annihilation, e e + hX, 

and the production of a massive photon, hh + e-e+X. Even in this 

deep inelastic region, these processes are not determined by the short 

distance structure of the theory, and it is interesting to determine whether, 

in this theory, they agree with the parton model. 

I. MATHEMATICAL STRUCTURE OF THE MODEL 

In this section, we discuss the mathematical structure of 

the model. We shall assume that the reader is already familiar with 

references 4 and 6, and, except as noted, we shall generally follow the 

notation of these authors. The following discussion will serve to remind 

the reader of properties of the theory. QCD is defined by the SU(N) locally 

gauge-invariant Lagrangian 

where G j 
pv, i 

= BpAv 3 - BvA j +g[A , A,]; f P, i EL 

Dj ' . 
p, i 

= a d 
P i 

+gL ? 
P, 1 

a 
Here q. 

J 
is the quark field corresponding to color i (i = 1, . . , , N) and 
. . 

flavor a, A ? the anti-Hermitian, traceless gluon field. 12 
P* 1 

It is related 
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1 ’ k to the auxiliary C(N) field Ai by ii = Ai - fi 67 A 
k ’ (The singlet 

trace, A:, is simply a free field, but it is simpler to write the Feynman 

rules in terms of the U(N) field. ) 

In two dimensions, the coupling constant g has the dimensions of 

mass. The theory is superrenormalizable, with finite mass and coupling 

constant renormalizations. Asymptotic freedom is trivial, simply 

demonstrable by power counting. From the point of view of confinement, 

however, the essential simplification of two dimensions, however, is 

that one can choose gauges such that the commutator [A 
El’ 

A ,,I vanishes, 

and, consequently, the self-coupling of the gluons disappears. This 

makes it possible to understand easily the infrared behavior and to solve 

the theory nonperturbatively. The theory appears to be simplest when 

viewed in the infinite momentum frame. Correspondingly, we introduce 

“light -cone” coordinates and Dirac matrices: The metric tensor is 

g f- = g-+ = 1, g,, = g-- = 0. 

1 
Pf = p ~ = z (PO * P*) 

P’9 = P-9, + p+q- 

2 2 
Y+ = Ye = 09 Iv+, Y-1 = 2, [y+, y ] E 2y 5 

We choose the gauge A- = 0 and quantize on a null plane (line). We 

will think of x as the “time” and x+ as the “space” coordinate. The two 
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components of the quark field 1 
q 

R, L 
= y (1 f y5)q are not independent 

dynamical variables, so one must modify the canonical quantization 

procedure. 13 
One chooses 

Then 

{s,(x), qRt(Y)l = 6 (x+ - Y+P +y5) P. 
2 

-im y- - -- 
‘L = 2 8 ‘R * 

As in reference 13, we define the integral operator 8 -1 
to be the 

principal value 

1 1 
a=z J d2y E lx+ - Y+) 6 (x- - Y-1 

or in momentum space 

+ 

A. Infrared Structure 

Another non-dynamical equation of motion is 

a2A+ = -J _ = -62 qRTqR 

The general solution for a point source 6 2(x) is 

A+ = 6(X-,15 [x+1 + Bx+ - A)* 

(1) 

(2) 

@a) 

(3b) 

(4) 

(5) 

The first term is a linear potential, the Coulomb potential in two dimensions. 
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This is responsible for the binding force between qa pairs in singlet 

channels. The second term corresponds to a constant background colored 

“electric” field. Without loss of generality, 
14 

wemaytakeB =O. 

The constant term A contains no physics and can be gauged away, even 

within the class of gauges having A = 0. SO, without Loss of generality, 

we may also choose A = 0 if we wish. So we may take 

aw2 = ’ 
z 

1 
d2Y [x+-Y+1 6(x--Y-) 

or in momentum space, 

1 1 - =- 
2 + 

(k + iEJ2 I 
, 

- ie:) 

(6a) 

(6b) 

a definition which has been called 
6 

the “regular cutoff” of the infrared 

singularity at k = 0. A different procedure was employed by ‘t Hooft, 

which has led to some confusion of interpretation. Faced with ill.-defined 

momentum integrals, he simply cut away the small momenta, 1 k 1 > A. 

In coordinate space, this looks rather complicated, 
16 

but as X+ 0, we find 

a -2 ~ $(I x+1 - +--1 (7) 

-1 
Thus, as X -+ 0, we may think of X as the gauge parameter A. 

Consequently, we are assured that, as X + 0, it will simply cancel out 

of any gauge invariant quantity. This is why, as we shall discuss further 

below, ‘t Hooft found that the terms dependent on Xcancel out of the 
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hadronic bound state equation and why, in reference 6, all gauge invariant 

quantities are finite and independent of Xas X + 0. It is not so much a 

miraculous cancellation of infrared divergences which is operating here 

as it is simply an expression of gauge invariance. 
17 

Instead, as we 

shall elaborate below, the dependence on X has nothing whatever to do 

with the confinement mechanism. 

shall employ the regular cutoff in 

In summary then, we obtain 

Except when otherwise stated, we 

this paper. 

the Feynman rules as in reference 4, 

except that the free quark propagator is 

m2 
P-Y++2p y- +m 

so = 
p2 - m2 

1 
instead of So ‘= -m. 

F 

To leading order in $ the dressed quark propagator is the sum of 

“rainbow” graphs and is given (for arbitrary A) by 

s = 
p2 - m2 + g2N - g2NA 1 P- 1 

l-r 

(9) 

It has been suggested4 that, because the pole in p, moves off to infinity 

asA+ a, this is the reasonquarks are confined. To see that this is 

not true, let us switch off the Coulomb potential but retain the constant, 
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gauge dependent term in A. 
18 This is equivalent to adding a term to 

the free quark Lagrangian of the form AI& Q-3 Q-?, , where Q< is 
, 

the “null-plane” color charge: 

Q-j = 6 i / 

j t dx+qR qiR ’ 

3, 

2) 

The denominator of the dressed quark propagator is simply p2 - m2 - A 1 p- 1 . 

However, if one considers a gauge invariant such as the two point function 

of a color singlet, local source such as J 
tJ- 

= <yPq, one finds that the 

interaction between qq pairs precisely cancels 

so that free quarks of mass m are produced. 

the term in the self-energy, 

(See Fig. 1). 

B. Gauge Invariance 

Next let us discuss the bound state equation from the point of view 

of gauge invariance . It Hooft begins with the proper vertex r n a9b(p ,r) 

for finding quark a and antiquark b in an on -mass-shell, bound state n. 

It satisfies a simple Bethe-Salpeter equation (Fig. 2) 

“b(p,r) ig2N d2k 
‘n = 2 

IT I ( - k - p- > 
2% ab(k, r ), 

where we have defined the wave function 

+nab(p,r) = SEa(p) rn 
ab 

(p,r)SEb( p - r). (11) 

(10) 

(To simplify notation, we have suppressed the y-matrices. 1 
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We remark that all the <quantities defined above, propagators and vertices, 

are gauge-dependent.. Define 

4;bbcl = ijdP+ tab (prr), ’ (121 

IX = p-/r-). The variable x riaay be identified with.the momentum 

fraction carried by the quark in a right-moving infinite momentum frame. 

This- satisfies the simple equation’ 

where the “HamiUonian” H is .given by H = HO + VW 

The wave functions vanish at the ends; 

4,(x) - x B b (i - X)eb asx - 6 (i ). It has been pointed out by W. Bardeen 

that the equation may be regarded as a boundary value problem in 

potential theory. The argument is presented in Appendix A. 

The bound state equation (13) is, as ‘t Hooft showed, independent 

of k, which we’ve reinterpreted as the gauge parameter A -I . .For this 

reason, aswell as a desire for the bound stateSspectrum ‘(mesons) be 

physically sfgnificant, one suspects that’ pn2 and t!x) are gauge 

invariants. That this is correct may be &en as follows: 
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Assuming there exists a physical meson 1 n>, we define a gauge- 

invariant wave function 19 

J 
X 

~~n(x;y) s T <nl g(x)eg ’ 
dt PA’.(~) 

Q (y)J o> (15) 

(The integration is along the straight pathe = y +5(x 
P P ~ - Yp)) 

05 5 5 1. We have suppressed color indices, the color-singlet 

bi-local operator is to be understood. ) TO obtain a gauge invariant, 

we must allow for the possibility of an infinity of gluon emissions between 

x and y. To leading order in 1/N, the wave function may be depicted as 

in Fig, 3. What does this look like in the light-cone gauge A = O? 

The exponent is simply 

/ 

1 
(x _- YJ 

0 
A+( 6) de. 

Consequently, for x = y , the exponent vanishes so that the wave 

function reduces to 

yx;y) = T <n 1 Icl (x-, X+)+(X-, Y,) 1 o> (16) 

Consequently, the gauge-variant wave function, 4,(x, y) = TCn 1 G(X) +(y) 1 O>, 

is, for x = y,, equal to the gauge-invariant wave function \E- 
n’ In Fourier 

transform space, the condition x- = y is realized by integrating over _ 
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the conjugate momentum p,. The function is simply the Fourier 

transform 

dx+e 
-iP -x+ 

!Pn (0, x+; 0). (17) 

In conclusion, $n( x is a gauge invariant quantity. In the A = 0 gauge, ) 

it may be interpreted as the probability amplitude to find a quark with 

momentum fraction x in the right-moving infinite momentum frame. 
20 

(Indeed, 1 4,(x) 1 t urns out to be in principle measurable in deep inelastic 

lepton scattering. ) 

Recall that $n 
ab (x) is non-zero only for 0 5 x 5 1; in the infinite- 

momentum frame, the wave function scales only for both constituents 

ab moving in the same direction as the hadron. However, the proper 

vertex I- nab(p, r ) obeys crossing and represents not only the amplitude 

to find a quark-antiquark pair in the meson, but also the amplitude for 

a quark or antiquark to emit a meson. (Fig. 4) From Eq. 10, we see 

that rn 
ab 

in the regions x < 0 and x > 1 is uniquely determined by the 

values inside the interval 0 5 x 5 1, since (Fig. 5) 

dk - 
7- ab 
I (x,r) = - 

n (k -- - P ? 

It is somet imes useful to extend the definition of $n(x) outs ide (0,1) 

so that 

(18 1 
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_ ‘b 
-1 

1 
> 

4 -x n ah(x) (19) 

holds everywhere. 

C. Confinement 

Next, we wish to discuss completeness of the meson spectrum and 

confinement. Consider the Hilbert space L2[ 0,11 of square integrable 

functions on the interval (0, 1) with the usual inner product. The Hamiltonian 

H is not well-defined on this space since, even if 4 E L2, H$ may not 

be. To define H, we restrict its domain to functions which vanish at 

the boundary like x Pa((i - x)pb)as x -+ 0 (1). (This set is dense in the 

Hilbert space. ) Then, as It Hooft showed, H is Hermitian: 

(51, H4 ) = (HIJI, 4, 

Although H is Hermitian, it is not self-adjoint. However, it is not hard 

to show that it is essentially se1 f-adjoint, so its spectrum is complete. 

Since it has only discrete eigenvalues pn2, we conclude that the eigen- 

functions { 4,(x)} form a complete set on L2. 

However, this does not settle the confinement issue. For example, 

if one were solving the nonrelativistic hydrogen atom and restricted 

oneself to square integrable functions, one would find the bound state 

solutions but would miss the ionization states, which are not normalizable. 

In our case, since the meson spectrum extends to infinity, we suspect 
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that a meson cannot ionize to a quark-antiquark pair, but it is worth 

asking how the infrared behavior prevents this. Let us write the bound 

state equation as 

Normally what would happen is that at those momenta x* where the quarks 

would go on-shell (where pn2 = 
Y, - 1 + yb-’ 

x*. 1 -x* 1, the energy denominator 

would vanish, so that 4n(x) would develop a pole, corresponding to the 

decay. Confinement requires that rn(xA, r) = V$ n = 0 at those two 

values of x. In fact, it is easy to see that this must be the case, since 

if we supposed $n had a pole at some value x o, then V4n would be even 

more singular there. Note that if the potential were cutoff, e. g. , in 

a Yukawa fashion so that 

V’$ = - 
/ 

4 (y) dy 

(y 2 2 -x) fK 

Then V’ 4n would remain finite and, as expected, pn2 would become 

complex and there would be no bound states at all. The confinement 

condition 

I 

i 
dy 

0 (Y - x*) 
2 $.$) =o 

is an amusing property of these wave functions. 
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To summarize these results, we find that, in the N + Q) limit, 

the color-singlet meson sector contains an infinity of stable meson 

states, i. e., in first approximation, this is a free particle theory. 

The quark-antiquark continuum has disappeared in this non-perturbative 

approximation to the field theory and, it is hoped, will not appear in higher 

order in I/N. This seems likely, unless somehow polarization effects 

cancel the Coulomb potential. 

D. A Scaling Relation for the Mesons 

In preparation for later applications, we wish to point out a simple 

ab 
scaling law for the wave functions. Consider 4n (x) and let x = c/p 2. 

n 

Then it can easily be shown from the bound state equation that 
22 

lim bn ab 5 

0 

-2 = 0 a(E) 
n- m “n 

where the scaling function obeys the equation (for c 3 0) 

Some properties of the scaling function are 

(20) 

(21) 

P(E 1 + sin (E /r) as 5 + Q3 



-17- FERMILAB-Pub-76/ 22-THY 

Similarly, one may define 

(I b(c) = lim 
n+ * 

Another useful property for future work is derivable from the parity 

6 
relation : 

J 1 
$ On(x) = s 1 dx 

m 
a 0 

mb - 4p) o l-x 

Then 

Since the left-hand side depends only on ma, while the right-hand side 

depends only on mb, they must be independent of the quark mass. In 

Sec. III, we will show that agreement with the short-distance behavior 

of the theory requires that 

but have not found a direct demonstration of the remarkable relation. 

Another relation which follows from this is 

lim pn2 
/ 

1 

0 
dxd$x) = & ‘Ga F Gb) 

n-a 

(23) 

(24) 

(25) 

(26) 

(27) 
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(Choose -(+) for even (odd) parity. ) 

Although the integral 

formally diverges, we may define it from the integral equation to be 

a 

d@ba(S) = y, (28) 

These relations will also be very useful in later applications. 

Define the Green’s function G(x, y; p2) by 

(P2 - W G(x, y; p2) = 6 (x - y) , x9y E (0,1) (29 ) 

Of course, the solution to this equation 

G(x, yip21 = c 
(bnab(x) 4nab(y) 

2 2 
n P-P +ie n 

Now consider G(x;p2) : 
/ 

1 
dy G(x, y; ~~1, satisfying 

0 

(P2 2 
- H)G(x;p ) = 1 (0 < x < 1) 

(30) 

(31) 

(It is sufficient for subsequent applications to suppose m 
a = mb here, so 

G(x;p2) = G(1 
2 - X; p ). ) Suppose p2 > 0 and let x =5/ b2. Then one can 

show that 
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2 lim E p2 G+; p2) : h+a(S) (32) 
P -+ +m IJ 

where the scaling function hca satisfies 

h+a($) has both a real and imaginary part, although the imaginary part 

is rather ill-defined because ImG is a series of delta functions, Using 

the smoothing procedure discussed more fully in Sec. III, we find a simple 

relation between h+ a and 4’: 

‘\/ha 
h+a (5) = 7 5 / 

OD ddaW ‘2y 
o u(f-u+i E) = 

1 a 

/ 

OD du4a(u) -- 
E, - k (34) Tr 0 U- 

Consequently, h+a(S) is the boundary value of an analytic function ha(c), 

analytic in the complex plane cut along the positive real axis. Note 

Im h+a(5) = -fla $ (E) . (35) 

Some other useful properties are 

ha(t) - 5 Pa asc +O (364 

ha(e) -+ 1 + y,/c as 5 + 0 (except for 6 * +co) (36b) 
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For a massless quark (ma = 01, ha(S) = 1 is the solution. We may also 

define a spacelike scaling function 

h a(S] = lim p2 G( -a c 
P2) (5 ’ 0) 

2 p * -co 
-y2 ’ 

Wa) 

One can show that 

h a(8 = ha(%) . 

More generally, if we take p2 + a~ along any ray, we may define 

where 5 is assigned the phase of p2. 

Although it is unnecessary for the applications in this paper, one 

can also show that the Green’s function itself scales: 
1 

c c -- 
lim G( p2 , ; p2) = h+(f) 5’ 1 3 P2 

where the scaling function is given by 

(37b) 

(38) 

(39 1 
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E. Cluster Properties 

In a theory of confinement for which, by definition, there are no 

asymptotic states associated with the basic fields but only with composite 

fields, the cluster decomposition of Green’s functions must break down. 

Let us consider, for example, the “T-matrix” for quark-antiquark 

scattering in a color singlet channel. This was derived in Ref. 6 and is 

given by (Fig. 6 1 

c 
1 

n p2 - pn2 rn 
ab(~) rnabty) (40) 

where m(x) is the proper vertex function defined earlier, Eq. 18, 
1 

Pm pm 2 2 
x =-, r 

y=y, andp2=F . For p - -a for fixed x, this is a 

gN 
light-cone limit for which the Born series converges, each term of which is 

g2N 1 suppressed by 2 = 2 with respect to the preceding term. However, 
rr tJ 

for p2 + +co, the timelike region, the Born series diverges. The imaginary 

part of T is given by 

ab 
(4 r (41) 

and is either zero or infinite. This divergence of the perturbation series 

results in the formation of bound states. For this purpose of discussing 

unitarity, it is useful to rewrite the series as follows: 
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For x, y E (0, I), we may use the completeness relation and bound 

state equation to manipulate T into the form 

4 F2 _ ‘a - ’ _ > 
X 

P2 _ ‘a - * _ 
Y Gtx, Y: p2) (42) 

r 

The appearance of the delta-function illustrates the breakdown of the 

cluster decomposition. In any calculation involving qS scattering for 

X, y E (0, 1), the first term cancels the disconnected diagram. 23 (See, 

e. g. , Fig. 7) The second term contains two inverse energy denominators, 

precisely as required to cancel quark singularities, leaving only a sum 

over meson states. Although Eq. 42 is less convenient than the Born 

series for obtaining the asymptotic behavior, it is much more suitable 

to a discussion of unitarity. (We remark that, for either x or y outside 

the region (0, 1), the delta-function does not emerge and the disconnected 

diagram survives. ) 

One final remark about interpretation: In a gauge theory, the Hilbert 

space depends on the choice of gauge. Our choice A = 0 has the advantage 

of being ghost-free and manifestly covariant. There is still the freedom 

to shift A+ by a constant, and the natural choice of “regular cutoff” 

(A = 0 in Eq. 5) has the advantage of preserving manifest covariance. 

In this gauge, there are quarks of finite mass 
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Choosing a gauge with A # 0, although somewhat more difficult to 

interpret, has the great computational advantage that, when calculating 

a gauge invariant quantity, the dependence on A must cancel out. For 

some purposes, It Hooft’s choice A - m is convenient: for others, 

A - 0 seems more natural. 

This concludes our discussion of the mathematical structure of 

the model. Let us now turn to applications involving local currents. 

Hereafter, except as indicated otherwise, we shall choose units so that 

g2N/4T = 1. 

II. QUARK “FORM FACTOR” 

Consider the three-point function r for an arbitrary local source 

A. (See Fig. 8 for notation. ) (For simplicity, we shall restrict ourselves 

to sources independent of p,. ) It is a simple matter to insert the T 

matrix and obtain the solution 

rA (x, q) = A(x, q) - $ 
. 

Gty’, Y: S2) 

(43) 
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where x ! p-/q . The second term is obviously proportional to y . 

of we insert the explicit form for the Green’s function, we find 

r-,(x, q) = Ah, q) - Ma 1 

where 

A=1 

/ 

1 

‘n z 0 
dy’$‘n(y’) [Y - (I’+ + 2) A(Y’~ q)(J’+ - H:;,jq)y] (44b) 

A 
yn is the direct coupling of the source to the meson; r n, the coupling 

of the meson to the quarks. 

For example, for a scalar source, we have 

m 
G(y, y’: q2) a - 

Y’ (45) 

For a vector source, we have 

rp, 9) = ey 
P 

dY dY' 
mm a b 

(Y - x)2 
G (y, y’, q2) 

C 
g 

t-l+ - 2y’U - y’ ,q-gp- 3 
(46 ) 

From the bound state equation and the parity relation Eq. 24, it is easy to 

show that 

Pnz: I 
1 

0 
d n(y’ 1 dy’ = ~rn~rn~ / 

* dY’$$’ 1 

0 yv-y’) * 
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Noting that only odd parity states contribute to the vector current, 

we find for the divergence: 

&-p, 4) = ed + ey- 
2q x(1 - x) 

In the theory defined by quantization at equal time, it is easy to show that 

this is the generalized Ward-Takahashi identity. In the light-cone 

quantization scheme, it is much more laborious toprove but equally 

true. We omit the proof here. 

For future work, it is convenient to note here a simple formula 

for r (p, q) Z e y-r(x, q), 

J 
1 

rk, 9) = 1 - dy G(y;q) 

O ty-x)2 

(47a 1 

y, - ’ yb - ’ 

x - lmx 
Gk q), ogx<l (47b) 

The first form is convenient for obtaining the asymptotic behavior, 

the second, for understanding the unitarity structure. Note that, for 

x E (0, I), it is, in a sense, fair to say that the bare coupling to quarks 

has been cancelled. On the other hand, as q2 -+ 00 for fixed x, r -, i, 

so it is the same as if the coupling were bare in either case. -- 

If the quarks try to go on-mass-shell, the inverse energy denominator 

vanishes . It is amusing to note that a similar thing happens to prevent 
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two mesons from producing a q;? pair. (Fig. 9 1 Armed with the decom- 

position of the T matrix, Eq. 42, it is not difficult to show that this 

amplitude vanishes if we attempt to go on the quark mass shell. Even 

though this, and the preceding, are gauge-variant statements, they do 

accurately reflect the mechanism which, as we shall see below, operates 

in all gauge-invariant calculations. 

III. TOTAL HADRONIC CROSS SECTIONS 

Although this has been discussed in part in ref. 6, we wish to 

review it here to establish notation and to emphasize several concepts 

which are relevant to the discussion of the more compticated processes 

treated in subsequent sections. 

Consider the two point function for an arbitrary local source 25 A. 

Either using the form factor of the preceding section or the T matrix 

given earlier, one finds (Fig. 10) 

Tr A A (9) = -$ 
A 

dx dy g 
1 

lx, q) G(x, Y; s2) g 
A2 

(Y, 9) 
1 2 

where gA(x, q) : 
WANky - Nk _ q) 

4x(x - 1 )q 

and N k 
5 k-y, + m2y /2k- + m is the numerator of the quark 

(48 ) 

propagator. We have expressed this in a form which obviously factorizes 

at the bound state poles and has no quark singularities. The integral 
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converges at the end points because G vanishes there. Because of this 

vanishing at the ends, in general, one cannot interchange the limit as 

q2-+ co with the integration. 

Jf we insert the definition of G, we may write this in the meson- 

dominated form (see Fig. 11) 

A A 

Tr 
2 

* A (4) = -y 
1 2 

c 
g n* (9) gn 2 (9) 

n q2 - pn2 

The coupling g,” of the bound state to the source is given by 26 

g;(q) = 
/ 

1 
0 

dx g* (~9 q 1 $n(x). 

Note that the preceding formulas are manifestly gauge invariant. 

Consider, for example, a scalar source. Then we find 

gs(x) = m(l - 2x1 

2x(1 - x) 

(49 1 

(SOa) 

1 - g; 7 (bJx)(l - 2x) =m I 1 = - qx) (sob 1 
x(1 xl 

dx 

x 

(even 

0 

parity) 

Asn -*, gz tends to a constant g 00’ Letting x_= fd I-C n 2, we have 

J 
OD 

n +a) 
g; - 50 =m df 4 ( 0 

oT a 
(51) 
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Since pn2 
2 

+nTr , the sum Eq. 49 diverges (logarithmically) and requires 

subtraction. which comes as no surprise since the scalar bubble diverges 

by power counting. The asymptotic behavior may be obtained as follows 

ns(g”, -I&o) = - eZN q2c 
S 

(g;J’? 
Tr n 

Pn2h2 - Pn2’ 

For large q2, we may write 

do 
c &;I2 

n=N 
Pn2h2 - Pn2) 

2 2 

2s In (-q’). 

-qz 

Hence, 

n 
2 g 2 

.s(q2) h) - y + 0 In t-q21 

Since the theory is asymptotically free, this must agree with the result 

obtained from the bubble (first term in Fig. 11) which is simply 

-e % 
-1n (-q2). 2Tr 

Therefore, it must be that 

(52) 

(53) 

(54) 
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(55) 

This result is typical of the rather remarkable identities which must be 

satisfied by the wave functions. Others can be generated by considering 
non-leading terms in the asymptotic expansion. We have seen in Section 

I. D that this integral must be independent of m; unfortunately, a direct 

proof of the result has eluded us. 

As a second example, consider a vector source. Regulating in 

a way which preserves current conservation, we write 27 

I-I P” = ‘9pv - q2qlly) n, (cl2 ). 
n c- is simplest to calculate. We find, as in Ref. 6, 

s 

1 

0 
dx bn(x) 

Then 

II p12) = -- dx dy Wx, y; q2) = 

2 
eN 
- c 

0 v 2 
gn 

Tr 2 2 * 
n 9 -P n 

To discover the asymptotic behavior of gn, note that 

(56) 

2v 1 
Pn gn = m2 = 2m2 

J 
dx 4Jx 1 

0 X 
7 2mgr (odd parity) (57 ) 
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(gP n 
can be shown to be the coupling to a pseudoscalar source. As n -a~, 

#zp + n gg). Hence 

Writing 

(58 1 

(59 1 

c v2 6 
‘gn 

= 1 by completeness. Similar to the scalar case, the asymp- 
n 

totic behavior of the second term must be treated with care since we 

cannot interchange the limit q2 + 00 with the sum. We find 

v(q2) 
2 

2 

II = - z+ ga3 
i+ 2m- 

( > 
W-q2) + . . . l-r 

*q q2 

A direct calculation of the vector bubble agrees with the above formula, 

2 2 
provided Zg, /TT = 1, the same condition we obtained for agreement 

in the scalar case. One might have expected terms of order 22 2 
rq 

Ito appear from the next terms in the perturbation expansion (Fig. 11). 

However, as m * 0, these terms must vanish for a vector source, 

SB the coupling constant can only enter in next order as 
g2Nm2 

4 l 

J-w 

(60) 

To summarize the asymptotic behavior, we find that, as expected 
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by superrenormalizability, the limit as q2 + Q) (in any direction in the 

2 
complex plane other than positive q ) may be calculated perturbatively 

from graphs involving quarks and gluons. However, for q2 > 0, the 

timelike region, the perturbation series diverges and the theory must 

be solved nonperturbatively. For example, for the scalar source, 

Im n s (q2) = e2N c (Q2 6 ls2 - pn2). 
n 

(61) 

Thus the imaginary part is either zero or infinite. However, recalling 

Eq. 54, we expect in an average sense 

lim c 
q2-+ 00 n 

(62) 

To demonstrate this directly, some sort of smoothing procedure must 

be applied such as averaging over several resonances or averaging the 

values 
28 of rs(q2) at q2 = 

2 
p f iA . 
n 

The simplest way is to interpolate, 

using the fact that pn2 + nr2. Then 

lim c 
q2-w n 

co 
lim 

q2.+ a) 
dn (gzJ2 6 (q2 2 

-n7T ) 

2 2 

N lim ( ) g:h21 gco = - 
3 lr Tr (63) 
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2 2 
where n(q2) = q / IT e It has often been remarked 29 

that, in two dimensions, 

- -I- the scalar source is more nearly analogous to e e - hadrons in four 

dimensions, since a scalar current can create a qqpair of massless 

quarks while a vector current cannot. (This is the reason that the 

imaginary part of rI v is proportional to m2. From the point of view of 

the operator product expansion, this requires calculating non-leading 

terms in singular functions for the vector case. ) 

Notice that the exact imaginary part has only hadronic intermediate 

30 
states. However, when properly smoothed, its asymptotic behavior 

is the same as obtained from the imaginary part of the bubble graph 

which comes from quark discontinuities. In fact, when the perturbation 

theory is summed, all quark discontinuities are precisely and completely 

cancelled and replaced by hadronic discontinuities. This illustrates 

the inadequacies of all previous attempts to formulate parton models 

mathematically. The so-called covariant parton model 31 
neglects 

connected diagrams with respect to disconnected graphs, ignoring the 

fact that, in any theory of confinement, the cluster decomposition must 

break down. This formulation certainly gives scaling but unfortunately 

also gives quarks. The massive parton model 
32 

is a step in the right 

direction except that technically there are many differences. The 

kinematical limit in which the quark mass becomes infinite bears some 

resemblance to the A e 63 gauge, but confinement clearly arises 

dynamically, and there is really no need for infinitely massive quarks. 
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At this point, it does not seem justified to associate scaling with pomeron 

exchange. A somewhat more general formulation 
33 

comes closest to 

our experience with this model, although the speculations about the role 

of duality cannot be investigated in two dimensions. 

IV. MESON FORM FACTORS 

In this section, we shall discuss the electromagnetic form factors 

of the meson bound states. Consider the transition form factor from 

state n to state m (See Fig. 12) 

(F p)nrn = (PI* + P; + 
‘Pm2 -’ pn2 1 

d 
qp )Fnm(q2) = <nl JI*Im> 

Here we have p2 =P;~, -.gzp 2, 
m q =p -p’. Tt, leading order in 

1/N, the form factor is given by the diagrams depicted in Fig. 13. 

From the Ward identity noted earlier, it is a simple matter to show 

that these diagrams satisfy current conservation. It is simplest to 

34 
calculate F -’ for which we find 

Fwa 
nm 

=. 
-i2e 

a 
IT 

(64) 

d2i r ab- -b 
n 

(k, p) SE?(k) Ta(k, q) S;%-; ) fmab(k-4, P’ )SE (k-p) 
(65) 

(We have written the contribution from the interaction with the quark a; 

b 
to this we must add Fmnm, the coupling to the antiquark E. ) Following 

ref. 6, we have defined y-S(p)y- E 2 SE(P)Y_, so 
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-1 

I 

-? 
- TA E (p-1 

Let us now choose a Lorentz frame for which q > 0. Because the 

vertices depend only on k , we may perform the integration over k 
f’ 

giving the two contributions of Fig. 13, corresponding to the two “x- time- 

orderings” of the process. Defining 35 
x = q /p (0 g x < 1 for spacelike - - 

q2), we find 

a 
E nm 

= 

(66) 

We recognize the energy denominators corresponding to the two “time” 

orderings . Indeed, calculations in the A = 0 gauge are most efficiently 

performed by directly writing down the Feynman rules for old-fashioned 

perturbation theory in the infinite momentum frame. 36 
Using the bound 

state equation and the formulas derived in section II for the quark form 

factor (Eq. 47), the equation above may be written as 37 
(suppressing 

flavor indices ) 
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F-Irn = 
1 

2eaP- 

(67) 

Y, -I 
- - 

Y-X 

In manifestly covariant language, x satisfies the equation 38 

We are especially interested in the asymptotic behavior as 

q2 = -Q2 -c --a)* ‘m2 Suppose we choose a frame where x x ? - - 
Q2 

as 

Q2-. In the first term, we let z == and insert the form of the 

quark form factor from Eq. 47a. After some manipulation, we may 

bring it into the form 

F-a II 
1 

nm 
= 2eap (1 - x) 

0 
dz 4n (x + (1 - x)z) Qz) 

fx du dz x2 )d,(z ) 
I 

The equation may be described graphically as in Fig. 14: The first 

term is the bare coupling to the quarks; the second and third terms 

involve mesonic couplings to the photon. A gluon exchange has been 

(68 1 

extracted so that all quark constituents of mesons have momentum 
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fractions in the interval (0, 1). Note that the extracted gluon cannot 

be infrared singular (at finite qL). The expression above is exact; now 

let us consider its behavior as x -c 1. Using 4 (x) - c n n(l - xlPb as 

x 4 1, we find for the first integral, simply 

Cn(l -xl @I ‘dz (1 - z?b$ 
m (z) 

We cannot simply let x - 1 in the second term because the integral 

becomes singular. Let x(l - u3 = v(l - x ). Then we find for the second 

integral 

-Cn(i I:18” 6’ dz q$m(z)j-)v ” + ‘$;lf- z)Ph)h~(pm2v) 
n 

Rutting it all together, we find for q2 - -co, 

Ftrn (q2) x 2e c a n$#j ‘“ib’dz $m(zl(l - zlPb 

(69) 

The form factor is power behaved, but the power is dynamically 

determined. 
39 In particular, the mechanism is not that described by 

Brodsky and Farrar, 
9 a point which we discuss further below. We have 
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not found a simple interpretation for the coefficient of the power: it seems 

to be complicated. Although the power is the same as one would obtain 

from a parton-like calculation (neglecting vertex corrections to the bare 

quark coupling), the coefficient is different. Thus, there does not seem 

to be any direct relation to the short-distance behavior of the theory. 

From the mathematics above, it is clear that the form factor probes the 

probability amplitude that the struck quark a carries all the initial 

state momentum, while the antiquark b carries none. This is similar 

to Feynman’s description, 
8 

although in the model we can go further to 

say that this amplitude goes as (1 - x) Fb. 

The form factor must be an analytic function of q2 with only a 

right -hand cut. However, the wave functions are not analytic functions, 

so it is impossible to see this from our formulas. However, we can 

2 
calculate the form factor directly for timelike q and check, for example, 

that the asymptotic behavior agrees with the spacelike limit. So let 

us consider the “decay” of a virtual photon into two mesons n and m. 

Defining w = p-/q-, we have the relation 0 < w < 1 

‘n2 q2 = - + pm2 
0 2-o * (70) 

There are two solutions aR and wL, corresponding to whether the decay 

occurs with meson n moving to the right or to the left. Of course, by 
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parity invariance, these two amplitudes must be equal, which implies 

that, when written in terms of o, the form factor must be invariant 

under the substitution 

I- 0 

cd- 
l+W 

‘Pm2 - Pn2’ 
2 

We have not been able to demonstrate this invariance. 

Proceeding in a manner similar to the spacelike case, we find 

(see Fig. 15 for notation) 

I, 

1 
F-E, = 2eaq- dy G(y; s2) 

w [ 

pn2 ma2 - 1 mb2 - 1 
m- 

w Y -0-y 1 ‘n(tJ4rn(Y$ 

r 3 

-s 
w m 2 - 1 

0 
- 1”- y - 

(71) 

Notice that the coupling of the photon is entirely meson-dominated. 

Changing variables and using the bound state equation leads to 

F&trn = 2e,q w(l -w) du dz[G(wu;q2)-G(w+z(l- w);q’] $n(u)4m(z) 

(z(l- w)+w(i -u,> 2 
(73) 
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To obtain the asymptotic behavior as o * 1, we let w(l - u) = (1 - LJ)V. 

( ( h+” f$n 2(i + v)> - h+a(pm2(i - z,,) 

It is reassuring to find the same power as for the spacelike asymptotic 

behavior. 
40 

Inserting the explicit sum over states for the Green’s 

function, the form of F is 

(Fma 1 c 
v 

x 2eaq- k 
gk yknmk2) 

nm b2-q2-ia 

With an obvious definition for yknrn (q’). It is important to note that, 

although real, vknm is a function of o, hence, of q2. However, by 

analyticity, there can be no singularities in q2 other than the poles 

displayed. Therefore, up to an additive polynomial, the function above 

2 
must be unchanged if we replace yknm(q ) by y hm(s2), the three 

meson coupling constant. In fact, because Fnrn * 0 as q2 -, CD, no 

polynomial is present . On the contrary, since qZFnrn+ 0 as well, we 

must have the superconvergence relation 

c 
V 

k 
gk &.,mh’$2) = ‘* 

(74) 

(75) 

(76) 
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In summary, the form factor will satisfy a meson-dominated dispersion 

relation. Because this dispersion relation is unsubtracted, the so-called 

“bare quark coupling” term which we found convenient to extract on the 

spacelike region is purely a matter of language and has no counterpart 

in unitarity. 
41 

Having concluded our discussion of the behavior in this model, 

let us compare it with the picture of form factors put forth by Brodsky 

9 
and Farrar , whose structure closely resembles the one here. Those 

authors would obtain the asymptotic behavior from Eq. 73 by letting 

for fixed constituent momentum fractions u and z: 

F;m(s2) ‘y 
1 

dz 4mW(i - h+a(pm2(i 

where we have inserted a parameter 6 to facilitate comparison with 

Ref. 9. (Of course, 6 = 1 in this superrenormalizable theory. ) The 

first factor involving $m is the wave function at the origin in coordinate 

space plus a correction h+” because of vertex corrections to the photon 

coupling. The second factor involving 4n is divergent, because $n(u) 

doesn’t vanish sufficiently rapidly as u + 1. In more physical terms, 

this divergence informs us that the large momentum does not flow through 

the gluon exchanged. Indeed, a glance at the correct calculation, Eq. 74, 

reveals that the momentum continues to flow with the quark and is taken 
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up by exchanging the infinity of gluons which bind the quarks. On 

the other hand, for a renormalizable theory (6 = O), the demands on 

4n(u) are less stringent and the last factor may be finite. In any case, 

the result depends on the rate at which ‘bn(x) vanishes at x = 1, which 

is not a property to be inferred from the short distance structure of 

the theory. Although $n(u) is determined by the light-cone structure 

(x .= 0), the behavior as u - 1 (p + r _) determines the probability 

amplitude for finding the antiquark at large distances (x+ -, CD ) along 

the light cone. This last property would seem to carry over to renor- 

malizable theories as well. 
42 

We shall speculate further on this subject 

in Section VI. 

V. DEEP INELASTIC SCATTERING 

We would now like to take up deep inelastic scattering e-h + e-X 

by discussing the Bjorken limit of virtual Compton scattering. Because 

the theory is superrenormalizable, one expects to find exact scaling, 

and this will be borne out by explicit calculations. Our interests here are 

two-fold: (1) How does it work that the model scales and, without creating 

any quark-antiquark pairs by polarizing the vacuum, manages to have 

only hadronic final states, (2) The short distance expansion and the 

light-cone behavior are simply related by the so-called moment sum 

rules for the structure functions. One might be concerned that infrared 

singularities might somehow destroy this relation. Since this worry 
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will be settled in favor of the naive expectations, we relegate to Appendix 

B a brief discussion of these issues. 
43 

Diagrams contributing to the imaginary part of the virtual Compton 

amplitude are shown in Fig. 16. Confident that quark singularities 

cancel as usual, the only final states which will contribute to leading 

order in 1/N are the single meson states (Fig. 17). Thus to calculate 

the imaginary part of Compton scattering, we simply need to square the 

form factors. To be specific, define the structure function W as 

wpv = (pp-Jff-$f)(pv- yq $wh.F. V) (78) 

where as usual, we define p= q = -pn2. Then, e. g. , 

W = (2~)’ -- c 
1 F-zrn (q2) + FLim(q2)[ ‘6(p - q)2- p--2j- m- (79 1 

m 

We are interested in the asymptotic behavior q2- CD for fixed 

xBj 
G q2/ 2pt q. Of course, we must somehow smooth the delta functions 

if we are to calculate directly from the formula above. We proceed 

as in the discussion of the hadronic total cross section by writing 

W -- z 4 lirnBj 1 F-E, ( v,d-) f F-L, ( v)(sz) 1” 

where m(v) is defined by (p - q)’ X 2pnv(l - x Bj) = p 2 m = m(v)rr2. 
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Defining x = q /p as before, we have, in the Bjorken limit, x 2 - - xBj’ 
(A simple way to see this is to take q, * -0~ for fixed q > 0 and fixed p. ) 

Returning to Eq. 68 for the form factor, let us again take its asymptotic 

behavior but now for fixed x (p 
2 

m + aD 1. Since (brn(z ) m asin mrz, 

the integrals are dominated by their behaviors for z z 0, 1. Consider 

the first term coming from the bare coupling: the region z xl is 

suppressed relative to z x0 because $n vanishes there. Letting 

we have 

2e,P- x 

I 

co 
E 

(-s2) 
yx 1 baccJ 

0 
(81) 

Using Eq. 28 for the last integral, we conclude that this term gives 

This is in fact the exact result, since the other terms in Eq. 68 vanish 

more rapidly, as we will now argue. For the region z w 0, the dominant 

contribution comes from u x 1. Letting z = c/ pm2, u =I - d (-q2L 

we find 



-440 FERMILAB-Rub-76/ 22-THY 

X 
-q2 

z 

(-q2hJm 

2 ‘?( (x) drl g-h) 

The integral over 5 behaves as n 
-1 

for large . Since g (n) + 1 as 

q - 00, the integral over q diverges logarithmically. Altogether then, 

we find this region gives a contribution of order ln(-q2) . Similarly, 

q4 

one can show that the region zx 1 is of order q 
-4 , 

The contribution of the antiquark may similarly be shown to come 

from the bare coupling term 

1 
F- b (q2) = 2ebp-(1 - xl ,nm 

dQn(z(l - xH$mlz) 

Letting z = 1 - E/ pm’, we find 
44 

F-nm b (s2)= 
2ebp-(i - x) 

‘*m2 

‘$,(i - xfdb4( -2) 

Wrnp- ~ e bmb 
“N 

4-z 
xon(l - x) 

(-q21 

(83) 

(84) 

(85) 
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Inserting these results into Eq. 79, we find for the structure function 

lim 
B j 

2Tr2x2 
2 

W(q2, v) = , (86) 

6q2) 
2 [ eama$n(X) + (-)mebmb$nn(i - x)1 

or 

Lim 
Bj 

v2w(q2, V) = 2x2 (ea2ma24n(x)2 + eb2m b2bn2(’ - x)), (87) 

which is exactly what one would obtain from the handbag diagrams. 45 

-(Fig. 18a) Actually, the specification of the handbags requires care in 

order that they lead to a gauge invariant result. The correct corres- 

pondence, as one might have guessed from the short distance expansion, 

is to choose A =- 0. in a frame where x - x 
Bj 

and to take bare (pointlike).. 

couplings of the photon to the quarks and bare quark propagation between-.. 

the photons, the other three quark propagators are fully dressed. This 

is discussed further in Appendix B. In going from Eq. 86 to Eq. 87, 

the interference term proportional to 

(-)m2eam,ebmb%(X)~n(1 - X) 038) 

has been dropped on the grounds that the phase factor (-)m = e -i(p -qJ2/a 

oscillates infinitely rapidly as (p - q )2 -+ do. One might naively expect 

this interference term to survive, because final states of only one parity 

will contribute (m is either even or odd). However, we must remember - 

that this formula was arrived at by smoothing the delta function discon- 

tinuity. The proper interpretation of all these terms (including this 

phase) should be determined by taking the limit (p - q)2 - fz in some 
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direction other than along the positive real axis. 
46 

We present an 

argument along these Lines in Appendix C, showing that, to this order, 

the interference term contributes only to the real part of the Compton 

amplitude. One might have expected this interference term to correspond 

to the “crossed” handbag (Fig. 18b). However, there does not seem to 

be any way to assign a gauge invariant interpretation to this diagram. 

This leads us to conjecture that, in processes where there is no short 

distance expansion to guide us, it may not be possible to give a gauge 

invariant meaning to the parton model. 

The physical picture which goes with the mathematics here is 

quite similar to the discussion of the total cross section (Sec. III), but 

we feel that they bear repeating. For (p - q J2 off the real 

perturbation expansion converges and, because the theory 

axis, the 

is asymptotically 

free, the high energy behavior may be simply calculated from the lowest 

order graphs (handbag diagrams 1. For (p - q)2 > 0, the perturbation 

expansion diverges and the discontinuity comes entirely from mesonic 

final states. Nevertheless, the asymptotic behavior is exactly the same 

as if we calculated the discontinuity of the handbag diagrams (Fig. 18) -- 

with pointlike couplings to bare quarks. 
47 

This resolves very clearly the 

paradox of how the parton model works without producing quark final 

states. This should also clarify the meaning of the “as if” nature of all 

calculations performed in the Language of bare quanta (parton model , 

charmonium, etc. ) 
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Notice that, as x + 1, v2 W - ( -i - x)2p, which is the Drell-Yan-West 

relation” between the behavior of the structure function and the falloff 

of the form factor. Secondly, because the resonances in the final state 

not only contribute to but in fact saturate the scaling function, the model 

illustrates very nicely the Bloom-Gilman relation. 
11 

As discussed in the last section, the form factor may be thought of 

as meson-dominated. From the point of view of the asmptotic states 

of the theory, the virtual Compton amplitude mav be denicted as in Fiq, 

19. This is, of course, a general correspondence nrincinle of anv field 

theory of confinement. Since normal analyticity and unitarity hold true, 

to any description in terms of bare quanta (parton model), there must 

correspond a description entirely in terms of physical (gauge-invariant, 

color singlet 1 states. 

To describe the situation again in-a language Similar to Feynman’s, 8 

consider the process in the brick-wall frame defined by 

-q = 1 (0, -2xP) 
rJz 

2 2 
P =1 

GT 
(P+k, P-‘n 1 

2P 2p 

We shall analyze the process in old-fashioned perturbation theory in 

the infinite momentum frame. The amplitude to find quark a in the 

initial state with momentum 
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k =& 
m2 m2 

yP+A , 
2YP 

yP- a 
2p 

is $n(y). The antiquark f; has momentum 

2 

P -k = mb 
(I - yJP + 2(1 - y)p ’ (1 -y)P - 

The amplitude that the struck quark combines with this antiquark to form 

the final state hadron of mass pm’“- 4x(1 . As 

2 
‘rn -c 

a, the wave function oscillates rapidly SO that we obtain contributions 

only for y x x + E/4xP2. The “invariant mass” of the struck quark is 

2 
2(k+ - q+)(k- - q- 1 x ima + 4xP2)(y - x) x f. Thus the rapid oscillation 

Y 

of the final state wave function forces the quark’s invariant mass to be 

finite. 
48 In Feynman’ s language, this corresponds to the assumption 

of ‘finite interaction energ+’ in the infinite momentum frame, so that 

the struck quark differs from being on-mass-shell by a finite amount 

A= f - ma2. Asymptotic freedom then guarantees that we must get 

exactlythe same result as for the handbag. 49 

VI. SUMNLARY AND SPECULATIONS 

In this paper, we have clarified several aspects of the two-dimensional 

theory, in particular, questions concerning gauge invariance and confinement. 
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We have shown how all previous attempts to make mathematically precise 

parton models fail here. By inserting a transverse momentum and 

assuming it is damped, it is clear how one could proceed ad hoc to con- -- 

struct a parton model patterned after what we have learned here. This 

could be considerably useful for phenomenology. 

We have considered hadronic form factors and shown them to be 

power-behaved for large q2. The power is dynamically determined by 

the coupling constant, and the physical. picture is not that of Brodsky-Farrar. 9 

To what extent can we expect our conclusions to apply to the four-dimensional 

theory? In four -dimensional &CD, the coupling constant g is dimensionless. 

However, if we believe confinement occurs, then there will arise dynamically 

some transverse momentum cutoff or Regge slope d which sets the 

scale of hadron mass splittings. TO say this in another way, the con- 

finement phase is a non-perturbative solution in which there are neither 

quarks nor massless gluons. This will be expressed by the replacement 

of the long-range force typical of massless exchanges by a damping factor 

or coherence length which determines the scale of hadron sizes or 

masses. Thus, even in the four-dimensional theory, quite apart from quark 

masses, there exists a dimensional parameter in the theory which we 

may take to be the Regge slope Q(’ m 1 GeV 
-2 

. The B-F arguments, 

which are essentially perturbative, might weI1 fail for the 

confinement phas e. 
50 Instead, we can imagine that after integration 

over p 1’ 
our equations look much as in this paper. If we wish to make 
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contact with a parameter of our two-dimensional model, we would set 

2 -1 ,rrg N = cy’ . But if we argue that the form factor is controlled by the 

details of the confinement mechanism which determines the hadron wave 

function and not by the short-distance structure, how can we account 

for the phenomenological success of the dimensional counting rules ? 
51 

2 -1-p 
Our meson form factors go as (q 1 , whereas BF would predict 

(sZr4. As It Hooft has speculated, in a theory such as this one in which 

the light mesons obey quadratic mass formulas, 
53 

the non-strange quark 

masses are very small, of order m x 15 MeV. But then p turns out to 

be about .025. Thus, in effect, light Quarks reproduce the dimensional 

counting rules! J?pr strange quarks, which are substantially heavier, 

m 
S 

x 200 MeV, we find p, x 0. 33, which may begin to be a testable 

difference. As we have seen, the form factor will be controlled by the 

lightest quark, so to discriminate, one would have to formulate tests 

sensitive to the strange quark component. Perhaps with sufficiently 

accurate measurements, one could see that the pion form factor is a 

single power but that the kaon form factor is the sum of two different 

54 
powers . 

Since we are suggesting that the picture here applies to four 

dimensions, we may attempt to anticipate how spin will alter our results. 

We recognize the factor ma 2/Q2 as coming from the helicity flip coupling 

to the quarks. As Feynman has emphasized, 
55 

the “transverse” 

transition form factors, such as TT * pI, would fall less rapidly by one 
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power of Q. Thus, we anticipate F lp(92) - Q-';", an extremely slow 

1 t 

decrease. Presumably, this could be tested in p \leptoproduction, whose 

contribution to vW2 in the Bj limit would fall as (Q2)-“. Thus, if 

p = 0, there would be exclusive channels, such as ‘i”y”p -+ pop, which 

would scale! (Fig. 20) This prediction is dramatically different from 

the BF result, 56 which leads to F - (&2)-2. The available data 57 
TP 1 

show that p p - t~-p’p falls dramatically at very small Q2(from Q2 = o 

out to Q2 z 0. 3 GeV2. ) Thereafter, this exclusive reaction remains a 

nearly constant fraction of the total cross section, from Q2 w 0. 3 out to 

Q2 X 3 GeV2.. By contrast, we expect that FKQ(Q2) N Q-*-2Ps, so 

that 4 leptoproduction would fall faster than in the p case. 

It should not be prohibitively difficult to perform accurate 

measurements in the timelike region of the pion form factor and of 

- + 
e e + ITS to test these predictions directly. 

Turning to deep inelastic phenomena, we have shown how the model 

achieves consistency with its short-distance expansion in e-h - -e X. 

We obtained the canonical scaling result, and it would be interesting and 

worthwhile to discuss inclusive electroproduction e-h - e-hlX in various 

limits (current, target, and hole fragmentation). A related, more 

interesting question is whether we obtain parton model predictions for 

reactions which are not controlled by short distance arguments, such as 

- f 
inclusive annihilation, e e - hX, and the Drell-Yan process, hh’ + e-e+X. 

These will be discussed elsewhere. 
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One could envisage other applications to purely hadronic phenomena, 

but since the two-dimensional model is not dual, it is not clear how useful 

this will be. It might be interesting to see whether there is a pomeron 

in this model. 

Perhaps the most interesting question to be asked of the two- 

dimensional theory is whether there are “baryon” bound states in the 

color singlet channel formed from N quarks in a totally antisymmetric 

state. Unfortunately, the 1/N expansion seems ill-suited for this purpose, 

so a different “non-perturbative” approach must be invented. 

To conclude, let us attempt to abstract a few lessons from the 

two-dimensional case which may be helpful to the solution of four- 

dimensional &CD. Although it has not been discussed here, it seems 

exceedingly difficult to solve even the two-dimensional model in any 

gauge other than the light -cone gauge. even to leading order in 1/ N. We 

might speculate that the compatible choice of gauge, the use of the proper 

infinite momentum frame, and the I/N expansion will also lead to simpli- 

fications in four -dimensions. The essential new complication comes from 

showing that the transverse degrees of freedom, especially the massless 

gluons, are actually damped and that only massive hadrons arise. 

Having chosen A = 0 and eliminated A+ as a dynamical variable leaves 

only &,I and the quark fields, so that spurious degrees of freedom are 

conveniently absent . To leading order in 1/N, we can continue to neglect 

quark loops but can no longer suppress gluon dynamics. Hopefully, this 

self-coupled glue will lead to a dual model of mesons. 
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APPENDIX A 

Following the suggestion of W. A. Bardeen, we will demonstrate 

the equivalence of the bound state equation to a potential theory problem. 

Define a function Fn(z 1, analytic except for a cut on (0, I), by 

Fn(z) = $ 
1 dx 4n(x) 

x-z 

Writing z = x + iy and F,(z) = U,(x, y) + iVn(x, y), we have that 

ImFn(x, 0) = Vn(x, 0) and our bound state equation may be written 

(Ai 1 

as 

- 
Pn2- Y, x -i - 33 1 -x -1 1 VJX, 0) = -ll& Un(x, 0) (A2 1 

By the Cauchy-Riemann equations, 

sun avn -=- 
8X w * (-A3 ) 

Therefore, we may state our eigenvalue problem in the following terms: 

Find functions Vn(x, y) and eigenvalues pn2 satisfying Laplace’s equation 

(5 + 5) Vnk y) = 0 (A4 ) 

in the upper half plane subject to the boundary conditions on the real 

axis : 



(1) V,(x, 0) = 0 

-550 FERMILAB-Pub-76/ 22-THY 

x f# (0, 1) (Asa 1 

V,(x, 0) = -IT $ VJX. 0). x E (0, 1) 

(A5b ) 

In addition, we require that Vn(x, y) vanish at infinity (in fact, as z -1 
). 

This is actually a useful form for obtaining approximate solutions to the 

equations. For example, consider the conformal transformation 58 

5 = sin-* (22 - 1) (A6 1 

mapping the upper half plane onto a rectangle whose boundary has the 

real axis as its inverse image. (Fig. 20 ) Letting f: = p + i a, we may 

restate the problem as: find Vn(p, a) satisfying Laplace’s equation inside 

the rectangle with boundary conditions 

(1) Vn(* 5) u) = 0 u>o (A7a 

V,(P, 0) = & -T&(P, 0) (A7b 

(3) VJp, a) = 0 9 pd-f: ,$ (A7c 1 

Because of Laplace’S equation, we may write the general solution satisfying 

boundary conditions (1) and (3) as 
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V,(p, d = c 
-2m Q 

e Ean sin 2mp + b 
n 

m m e-:os(2m + l)p] (A8 1 
m=O 

The remaining problem of satisfying boundary condition (2) may be 

formulated as a recursion relation for the coefficients a: and b n 
m’ This 

is now in a form amenable to numerical solution. 

The case when y, = yb = 1 is especially simple and can be easily 

solved numerically to yield accurate eigenvalues and eigenfunctions. 59 

We shall not elaborate this here. 

APPENDIX B 

We would like to expand on some of the details of the short-distance 

and light-cone structure of the model. The Fourier transfdrm of matrix 

elements of the product of two current will take the familiar form 

where 0 are a complete set of local operators. 
n 

The light cone limit 

generally requires that we keep our operators of a given “twist”, so 

that derivatives which are suppressed in the short-distance limit 

contribute equally in the light-cone limit. By gauge invariance, the 

covariant derivative must appear, i. e., 

‘1 ‘2 ‘“n 
q q ..Q G+x)D D 

PI CL2 
. . Dp q(x) IP> 

n 
W 1 



-57- FERMILAB-Pub-761 22-THY 

where D = a +gA. 
P tJ P 

Consequently, it may seem somewhat surprising 

that we recover the handbag diagrams in deep inelastic scattering, 

since these do not require gluonic operators. We can realize the 

light-cone limit by taking q,’ --a) for fixed q > 0. But then, in the 

A =Ogauge, 

q’D 
P 

M q+a . 

Thus it is precisely because our gauge was chosen compatibly with our 

infinite momentum boost that no gluons occur. Had we taken instead 

q - 00 for fixed q+ in this gauge, then the physics would not simply 

correspond to the handbag diagrams and would involve an infinity of 

gluon field operators as well. What appears trivial in one gauge will 

appear horrendously complex in another. (These remarks will apply 

equally to the four-dimensional problem. 1 

We would now like to illustrate how the infrared behavior might 

lead us to worry whether the light-cone structure would not be more 

complicated than it turned out to be. Consider for this purpose the 

lowest order vertex correction to the quark coupling (Fig. 2i). With a 

vector current, this diagram is given by 

(y-‘( ‘h ‘( I- d-f-) 

(km -l-J2 

U32) 

(B3) 
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In particular, for the y- component, we find simply 

$1) = _ & 
( )J 

1 
Tr O (: - tz( 2 2 

q2-Z(T-Z) > 

k 
where -Z 1 Y , in the notation used earlier in the text. If we consider 

x q- 

the short-distance limit, q2+ a~ for fixed y/x, we easily find the naive 

power counting result 

p - 

(B4) 

(B5 1 

However, for the form factor and for deep inelastic scattering, we found 

so that l?(l) - O(g’N/ m2 ) 

instead. 
Y To see this more explicitly, suppose we Let 2 X 1 f nm2/ (-q2) 

and z M 1 - sm2/ (-q2). Then we find 

(B6 1 

This is precisely why we obtained corrections to the parton model 

description of the form factor and, naively, we might expect a similar 

result for deep inelastic scattering where a similar limit had to be taken. 

(Recall Eq. 83. ) In the latter case, however, all such scaling contributions 

cancel each other leaving us with the famous parton model result. 



-591 FERMILAB-Pub-761 22-THY 

This cancellation, seen for example in Eq. 83, is presumably related 

to the gauge invariance arguments presented above but the precise 

connection has not been made. I believe this example serves as a 

warning that, in processes for which the result is not guaranteed by 

short distance arguments, these cancellations may not occur, and we 

may not recover the parton model. In any case, it makes clear how 

the infrared structure may substantially complicate the discussion of 

light -cone singularities. 

APPENDIX C 

In this appendix, we present an alternate derivation of the scaling 

result Eq. 87. Its main purpose is to justify further the neglect of 

interference terms . Our discussion here parallels the discussion of the 

total annihilation cross section given in Ref. 6 . The contribution to 

W comes from the imaginary part of 

T = -25r(l - x)~ dzdz’ G(z, z’; (p - s12)[ea2 dn(x +(i -x)z)~~(x+ (I -x)z’ ) 

+ eb2 4n(z(1 - xqp (1 - xl) + 2eaeb+n(x+(i -x)z)$~(z~(~ - xl)1 (Cl) 

Let us obtain the asymptotic behavior by taking (p - q)2 + CD (fixed x) 

in some direction off the positive real axis. Then we may use the 

asymptotic expansion 
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2 \ 

G(z, z’; (p - q12) + 
6(z - z’) + 1 -1 

a 1 
(p - s12 (P - q)4 

+mb2 - I 
z 1 -z 

(j(Z - zl) 
(z - zy2 

(C2) 

Just as in e-e+ - X, the term in (p - 4) 
-2 

contributes only to the real 

part. The first piece of the second term gives for the contribution to 

the ea2 term 

-2Tr(l - xl2 e 2 
1 2 

-1 
a 

(p - q I4 a 
dzr#n(x + (1 - x)z )2 

Z 

The integral diverges logarithmically at z z 0, which tells us that the 

leading behavior will be 

-2r(!t - x) 2 
ea2 4n(x)2(ma2 - 1) ln(- (p - q)2) 

(p - s14 
(C4) 

Continuing back to (P - q)2 > 0 and taking the imaginary part, we obtain 

2rr2x2 

q4 
ea2ba2 - 1) t$x)2 (C5) 

The term in Eq. 87 involving (z - z’ ) 
-2 

can easily be shown to cancel 

the 1 in this expression, leaving precisely the first term obtained in Eq. 

87, obtained by direct calculation. A similar discussion of the term in 

eb2 leads to the second term in Eq. 87. The interference term is 

proportional to 
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2 
-1 

dz dz’ $Qx + (1 - x)z)~~(z’(~ - x) “, + 6(z - z’) - 1 

(z - z’ ) 
2 

(C6) 

This is easily seen to be perfectly convergent; consequently it does 

not contribute to the imaginary part of T. Thus the interpretation given 

the oscillating phase found in Sec. V by smoothing delta functions is 

consistent with a more careful analysis of the asymptotic behavior. 
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Fig. 1: 

Fig. 2: 

Fig. 3: 

Fig. 4: 

Fig. 5: 

Fig. 6: 

Fig. 7: 

Fig. 8: 

Fig. 9: 

Fig. 10: 

Fig. 11: 

Fig. 12: 

Fig. 13: 

Fig. 14: 

FIGURE CAPTIONS 

Fermions are produced independently of the presence 

of the “gauge-dependent” interaction. 

Bethe-Salpeter equation for mesons. 

Diagrammatic form of the gauge-invariant wave function. 

Three processes related by crossing symmetry 

(a)qc*h 

O-d:-qh 

Hadron emission is determined by the probability 

amplitude $n(x) to find constituents. 

qc scattering in the color singlet channel. 

Hadron-hadron scattering. 

The quark form factor. 

hh - q;. 

The total cross section for hadronic production by a 

local source. 

Corrections to e-e+ -f X which cancel to leading order. 

General form of hadron form factors. 

“Time-ordering” in the infinite momentum frame (Eq. 66). 

Diagrammatic description of Eq. 68; all quark 

constituents of hadrons have momentum fractions in 



-63- FERMILAB-Pub-761 22-THY 

Fig. 15: 

Fig. 16: 

Fig. 17: 

Fig. 18: 

Fig. 19: 

Fig. 20: 

Fig. 21: 

Fig. 22: 

Two forms for the timelike form factors. 

Contributions to the virtual Compton scattering 

amplitude. 

Inelastic production as the square of form factors. 

The three “handbag” diagrams of the parton model 

(a) scattering from the quark and antiquark 

(b) interference term corresponding to absorption by 

the quark and emission by the antiquark. 

Deep inelastic scattering in terms of hadronic, 

asymptotic states. 

An exclusive reaction which almost scales in the 

Bjorken limit. (p in current fragmentation region, 

p1 in target fragmentation region). 

A conformal transformation of the potential problem 

(Appendix A ). 

Lowest order vertex correction to quark coupling 

of photon. 



-640 FERMILAB-Pub-761 22-THY 

FOOTNOTES AND REFERENCES 

1 Hereafter referred to as &CD. 

2 For a review with references, see H. D. Politzer, Physics Reports 14 -’ 

129 (1974). 

3 G. It Hooft, Nuclear Physics B72, 461 (1974). - 

4 
ibid. , BE, 461 (1974). 

5 G. ‘t Hooft, “Gauge Theory for Strong Interactions, ” ITP, Utrecht, 

1975 (lectures given at Erice and Copenhagen Summer Schools). 

6 C. G. Callen, Jr., N. Coote, D. J. Gross, “Two Dimensional 

Yang-Mills Theory - A Model of Quark Confinement, ” Princeton U. 

Preprint, 1975. 

7 T. Appelquist and H. D. Politzer, Phys. Rev. Letters 34, 43 (1974); - 

Phys. Rev. D5, 1404 (1975). We disagree with the conclusions of 

Ref. 6 regarding the dynamical suppression mechanism in this model. 

8 R. P. Feynman, Photon - Hadron Interactions, W. A. Benjamin, Inc., 

Reading, 197 2. 

9 S. J. Brodsky and G. R. Farrar, Phys. Rev. Letters 31 1153 (1973 ), -’ 

Phys. Rev. D11, 1309 (1975). Our appellation is not meant to slight 

V. Matveev, R. Muradyan, and A. Tavkhelidze, Nuovo Cimento Lett. 

7, 719 (1973), who also proposed dimensional scaling laws. It simply 



-65- FERMILAB-Pub-76/ 22-THY 

reflects the fact that our discussion most closely parallels the 

Bethe-Salpeter approach of Brodsky-Farrar (hereafter, BF). 

10 
S. D. 

G. B. 

“E. D. 

Drell and T. M. Yan, Phys. Rev. Letters 24, 181 (1970); 

West, Phys. Rev. Letters 24 1206 (1970). -’ 

Bloom and F. J. Gilman, Phys . Rev. Letters 25, 1140 (1970); - 

Phys . Rev. D4 2901 (1971). -’ 

12 They are related to the usual Hermitian fields A 
k 

P 
of the adjoint 

representation by A j = -i 
p, i -TA & ( xklj where $ \ are the traceless, 

Hermitian matrix generators of SU(N). (Of course, we believe N = 3 

for the real world. ) 

13 J. B. Kogut and D. E. Soper, Phys. Rev. D1, 2901 (1970). 

14 In the context of the massive Schwinger model, S. Coleman (to be 

published) has argued that, unlike in four dimensions, values of 

1 B 1 < 1 correspond to stable, well-defined “vacuua” which polarize 

the bound states. He has observed, however, that in the non-Abelian 

case, color singlet bound states cannot have a non-zero dinole moment, 

SO the background field Leaves the physics of color singlet states unchanged. 

I thank S. Coleman for a discussion about this. 

1 z t is often useful to keep A # 0 as a check in gauge invariant calculations. 

16 See Y. Frishman, Ref. TH 2039-CERN, 20 June 1975, Appendix. 



-66- FERMILAB-Pub-76/ 22-TJ5-Y 

17 of course, strictly speaking, for finite X, it is not a gauge parameter. 

However, calculations are always actually performed by using the 

X+ 0 forms. 

18 This exercise was suggested to me by W. A. Bardeen. 

19 Notice that this definition is quite generally gauge invariant, independent 

of the 1/ N expansion and the number of space-time dimensions. 

20 In four-dimensions, we would define $n(x) to be the integral over 

p, and the transverse momentum2 *. This should be the quantity 

which obeys a simple bound state equation. 

21 It is at this point that the argument specializes to two dimensions. 

22 Strictly speaking, in order for this limit to exist, we must choose 

the phase of bn(x) carefully to avoid oscillations. We choose 4 (x) n 

to be everywhere real and, as x + 0, we require (bn(x) 2 0. Note 

that, in the equal mass case, Q’n(l - x) = (-)n$n(x). (ground state 

corresponds to n = 0). Quite generally, having fixed the phase at 

x = 0, we cannot readjust it at x = 1. 

23 
It has to have an inverse energy denominator to cancel the extra energy 

denominator arising from the fact that the T matrix always involves 

one more loop integration than the disconnected term. 

24 So far as we can tell, the gauge invariant sector is always the same, 

regardless of whether the renormalized quark mass is positive, zero, 



FERMILAB-Pub-76/ 22-THY 

or even imaginary. As emphasized in reference 16, there does, 

however, seem to be a problem developing the theory starting with 

a bare quark mass m = 0. 
a 

25 For simplicity, we consider only flavor-conserving sources here. 

26 The dependence of g, n(q) on the momentum q is entirely kinematic, 

determined by Lorentz covariance. 

27 We find the assignment made in Ref. 6 of an anomaly to the vector 

bubble rather confusing or, at least, unconventional. 

28 E. Poggio, H. Quinn, and S. Weinberg, Phys. Rev. D, to be published. 

29 A. Casher, J. Kogut, L. Susskind, Phys. Rev. E, 732 (1974). 

30 To higher order in 1/N, when the meson resonances develop a width, 

smoothing of the thresholds will still be required for agreement. 

31’ Landshoff and Polkinghorne, Physics Reports 5 1 (1972) and references -’ 

therein. 

32 
G. Preparata, lectures given at Int. School of Subnuclear Physics 

“Ettore Majorama, ” (1974). 

33M. B. Einhorn and G. C. Fox, Nuclear Physics z, 45 (1975). 

34 We’ve been cavalier about the normalization of the proper vertex. 

As shown in ref. 6, the correct definition is m times rn(x, p). 

35Although x f x Bj-.G q2/ 2p* q, they become equal as q2 - CO. 



-68- FERMILAB-Pub-76/ 22-THY 

36 J. D. Bjorken, J. B. Kogut, and D. E. Soper, Phys. Rev. D3 -’ 

1382 (1971). 

37 Had we been calculating in a gauge where A # 0, we would have found 

at this point that all dependence on A cancelled. It appears that 

the two terms are separately gauge invariant, at least for this limited 

class of gauges. 

38 The two solutions for x correspond to whether meson n is right-moving 

or left-moving. We return to this point below. 

39 Recall that (3, is the root between zero and one of the equation 
2 

rrn b apbCOt lTp, = 1 - - 
gzN 

. Of course, we must add a similar contributior 

Fb -nm 
attaching the photon to the antiquark b, which will behave as 

(q2 )-* -Pa. Since (3 is a monotonically decreasing function of m, the 

falloff is least rapid for the lightest quark, i.e. , the photon prefers 

to strike the heavier quark since it is easiest to capture the lighter. 

1. 

40 
We have not, however, shown that the phase is e -ilTpb 

nor that the 

coefficient of the power is the same in the timelike and spacelike 

regions . Although much is simplified in the light-cone gauge, analyticity 

and parity invariance are often not manifest. 

41 Had the dispersion relation required a subtraction whose value was 

determined by the underlying field theory, we might have been 



-69- FERMILAB-Pub-76/ 22-TKY 

justified in regarding the subtraction constant as a reminder of the 

pointlike coupling to constituent quarks. 

4‘Although this requires further investigation, it would appear that in 

the present model, all quarks retain finite invariant mass whereas 

for BF, the struck quark is driven to invariant masses of order q2. 

43 All of these results differ from the conclusions of J. L. Cardy UCSB, 

TH-19 (1975) and UCSB, TH-1 (1976). Our disagreements stem from 

(1) his having calculated certain contributions to the real part of the 

Compton amplitude, and (2) his interchange of the q2 - m, A-+ 0 limits. 

As a historical aside, we received his first paper after having 

completed the work through Sec. IV. 

44 
Recall from footnote 22 the phase factor (-)m comes from our convention 

on the overall phase of the wave functions. 

45 The fact that v2W scales is due to the vector current: for a scalar 

current , VW would scale. 

46 This discussion is quite analogous to the analysis of the (su) diagram 

in dual models. 

47 As a technical matter, the leading contribution for the vector current 

is purely real and the leading contribution to the imaginary part is 

of order m2/ (p - q)4. In principle, the first order corrections 

involving gluon exchanges would be of the same order (g2N/ (p - q,4>; 
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however, they cancel out. (See Appendix B for details. ) In this 

respect, the discussion of the scalar current might be simpler; 

since one could neglect all contributions depending on the dimensional 

parameters m2 and g2N. 

48 It is amusing how the “on-mass-shell” condition for the quarks is 

reproduced by the rapid oscillations of the high mass wave functions 

4m(z 1. 

49 Wilson’s operator product expansion has been established only in 

perturbation theory, so one might have worried that it could fail 

somehow for non-perturbative solutions such as the one discussed 

in this paper. 

50 It has recently been emphatically emphasized that the properties 

of the confinement mechanism cannot be seen in perturbative 

calculations. See T. Appelquist, J. Carazzone, H. Kluberg-Stern, 

M. Roth, FERMILAB-Pub-76/16-THY, Jan. 1976; E. C. Poggio and 

H. R. Quinn, Harvard Preprint, 1976; Y. -P. 

Jan., 1976. Perturbation theory calculations 

-when justified by a-short -distance argument .- 

E;I 

Yao, UM HE 75-38, 

are trustworthy only 

d *See the review by R. Blankenbecler , S. J. Brodsky, and D. Sivers, 

.~ Physics Reports 23C, 1 (1976). 

52 Although we simply do not know how large pI processes are controlled, 

we might well expect that if the BF arguments fail for the form factor, 

other applications of dimensional counting will also be in doubt. 
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53M 2 
0 M (ma + mb)/m 0 See ref. 5. 

54 Of course, for even heavier quarks, the distinction between our 

conclusions and those of BF would become even sharper, albeit more 

difficult to test. One nice reaction would be e-e+ - F-F+, where 

F = (cs) the strange, charmed pseudoscalar meson. Others of interest 

- + 
not involving charm are e e - +q, s2-F- . 

55 
R. P. Feynman (unpublished). This is referred to in several places, 

e. g. , in R. D. Field and D. J. Mellema, CALT-68-522 (Internal 

Report ), 1975 (unpublished ). I thank R. Field for several discussions 

on this subject. 

56C. F. Farrar and D. R. Jackson, Phys. Rev. Letters 35 1416 (1975). -’ 

57 C. A. Heusch, invited talk at Int. Conf. on High Energy Physics, 

Palermo, 1975, and private communication. 

58 This was suggested by R. Savit (private communication). 

59 This has been done by R. B. Pearson (private communication). 
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